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Abstract

For triangles we have a well-known theorem, called Miquel's theoremp&aany point on each side of a triangle
and draw through each vertex a circle passing through the two points osidles which concur in that vertex.
Then these three circles always have a point in common, called Miquétis por tetrahedra we have an exact
analogon of this fact, Roberts’ theorem: Choose any point on eachadgeetrahedron and draw through each
vertex a sphere passing through the three points on the edges whiadlr doticat vertex. Then these four spheres
always have a point in common. The proof of this fact is quite esthetic ard gae to the assumption that its
method - using stereographic projection and several times the comelappfact for the triangle - could possibly
be applied for similar theorems for tetrahedra.

1. Introduction and Roberts Theorem

In this paper | would like to present a theorem concerning the generahéeiron. Although its first (and synthetic) proof
was found around 1880 by the british mathematician Samuel Robert {182 3), the theorem seems to be almost forgotten
(Figure 1):

Given a general tetrahedron choose any point (but no vertex) dmexdge and draw through each vertex a sphere passing
through the three points on the edges which concur in that vertex. Thea finer spheres always have a point in common.
(INAC64)).

2. Miquel’s Triangle Theorem

To proof Roberts’ theorem we need the analogon in the plane, which isalmown triangle theorem of Auguste Miquel,
established in 1838 (Figurg):

Given a triangle choose any point (but no vertex) on each side amdttraugh each vertex a circle passing through the two
points on the sides which concur in that vertex. Then these three ciralagsshave a point in common, called Miquel’s point.

Proof

Let A, B,C be the triangle vertices ami®lQ, Rthe chosen points on the sides oppoAitB, C respectively. First look at the circles
throughA andB intersecting irR on sideAB and having as second intersection pdtThe circle throughA has an inscribed
quadrangléARMQ which meens that opposite angles are supplementary, so we’ B&y®l equal to/BRM. The same is true
for the quadranglPMRon the circle througlB, and so/ CPM is equal to/ BRM. It follows that /CPM is equal to/ AQM,
which meens that quadrandgl#MQis cyclic orM is on the circle througk, thus being the common point of all three circles.
We quietly assumed thd is inside the triangle. The other casedwtoinciding withQ or R or lying outside the triangle are
treated similarly. []

3. Spherical Version of Miquel’s Triangle Theorem
We also need the spherical version of Miquel's theorem (Figd)re

Given three circles on a sphere having a pBiit common and intersecting pairwise in poif$,C. Choose any point (except
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Figure 1: Roberts’ Theorem.

A,B,C,D) on each circleP on circlecBC, Q on circlecAC andR on circlecAB. Then the circles throughA, R Q}, {B,P R}
and{C,Q,P} have a point in common, called Miquel’s point.

This theorem follows from the plane Miquel theorem by stereographieiion of the configuration on the sphere fr@nto

a plane normal t®D, whereO is the center of the sphere. The three circles thrddglorrespond to straight lines in the plane
forming the sides of a triangle. The other three circles correspond te ttiades in the plane, which have the plane Miquel
point in common and which corresponds to the spherical Miquel point.

4. Proof of Roberts Theorem

Proof

Let the vertices of the tetrahedron AeB,C, D. We intersect the spheres throulyiB, D with faceABD and get a plane Miquel
configuration with triangleABD and the blue circles througfA, A’ X}, {B,X,B'},{D,B’,A’} intersecting in Miquel poinR
(Figure 4).

The same is done with the spheres throBg€, D and faceBCD yielding the plane Miquel configuration with triangBCD
and the orange circles througB, Y, B'}, {C,C’,Y},{D,B’,C’} intersecting in Miquel poinP (Figure 5).

Finally the spheres through C, D are intersected with fac&CD giving us the plane Miquel configuration with triangh&D
and the green circles throudg, Z, A}, {C,Z,C’}, {D,A’,C’} intersecting in Miquel poin@ (Figure 6).

Now we have three circles (blue, orange, green) on the sphere thibirdersecting pairwise in poin®’,B’,C’. Further we
have pointP on the orange circle througf’,C’}, pointQ on the green circle througf?’,C’} and pointR on the blue circle
through{A’,B'}. From the spherical Miquel theorem it follows that the circles thro@ghR, Q},{B’,P,R} and {C’,Q,P}
have a poinM (on the sphere througb) in common (Figure7).
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Figure 2: Miquel’s Triangle Theorem.

The pointsA’, R Q lie on the sphere through, and so this is also true for the circle througl, R Q} and therefore for point
M (Figure 8).

The pointsB’, P,R lie on the sphere througB, and so does the circle through these points and particularly Wb{Figure 9).
The pointsC’, Q, P lie on the sphere through, and again also the circle through these points and paitie on this sphere
(Figure 10).

So M is common to all four spheres![]

5. Conclusion

The proof shows us the possibility of using a theorem valid in the plane arldeosphere to establish an analogous fact in
space. One might expect that if theé 2 3d - correspondence of the elements (circles, spheres, etc.) is dbincsymmetric’
kind the method can be used in other cases.

Roberts’ theorem gives rise to the following question: For which 6-tuplesigepoints the distance is constant between the
intersection point of the four spheres and the circumcenter of the tdt@ife

The analogous question arising from the Miquel theorem is easier andextiithted in a further paper. There is an interesting
connection between certain hyperboloids and the Miquel points.
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Figure 3: Miquel's Triangle Theorem on the Sphere.

Figure 4: Plane Miquel configuration with triangle ABD.
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Figure 5: Plane Miquel configuration with triangle BCD.

Figure 6: Plane Miquel configuration with triangle ACD.
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Figure 7: Miquel configuration on the sphere through D.

Figure 8: M is on the sphere through A.
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Figure 9: M is on the sphere through B.

Figure 10: M is on the sphere through C.



