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1. Gergonne’s theorem

For a triangle we have the following fact ( [RH95], pp.149,150):

The point of intersection of the internal or external bisector of a vertex with its opposite side divides this side in the ratio of the
lengths of the sides concurring in that vertex.

The analog is also true for a tetrahedron ( [NAC64], §235, p.80) (Figures1, 2):

The point of intersection of the internal or external bisecting plane of an edgek with its opposite edge divides this edge in the
ratio of the areas of the triangles sharing edgek.

Proof
For tetrahedronABCDwe introduce some abbreviations:
AB := oriented length of segmentAB,
ABC := area of triangleABC,
ABCD:= volume of the tetrahedron,
hAB := height of triangleABCon sideAB,
HABC := height of the terahedron on planeABC.
Now letXi be the point of intersection of the internal bisecting plane of edgeCD with its opposite edge andd the distance ofXi
to planesACDandBCD. Then we have

ACDXi = 1/3∗HABC∗ACXi = 1/3∗d∗ACD

BCDXi = 1/3∗HABC∗BCXi = 1/3∗d∗BCD

from which follows

ACD : BCD= ACXi : BCXi = (1/2∗AXi ∗hAB) : (1/2∗XiB∗hAB) = AXi : XiB

The same is true for intersection pointXa of the external bisecting plane of edgeCD with its opposite edge:

ACD : BCD= ACXa : BCXa = −(1/2∗AXa ∗hAB) : (1/2∗XaB∗hAB) = −AXa : XaB

2. Menelaos’ and Ceva’s theorem

Again we denote byXY the oriented distance of pointsX andY, i.e.XY = −YX. Menelaos’ theorem is basic for the following
considerations and must be mentioned therefore - however without proof (see [RH95], p.147):

For a triangleABCand pointsP on sideAB, Q on sideBC, R on sideCA the following is valid:

P,Q,R are collinear⇔ (AP : PB)∗ (BQ : QC)∗ (CR: RA) = −1

Later we also need the dual statement which is Ceva’s theorem ( [RH95], p.137):
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For a triangleABCand pointsP,Q,Ron its sides as before the following holds:

Lines(A,Q),(B,R),(C,P) are concurrent⇔ (AP : PB)∗ (BQ : QC)∗ (CR: RA) = 1

3. Four special lines of the triangle

From Menelaos’ theorem a remarkable fact for triangles can be derived ( [RH95], p.149):

Let be given an angle bisecting line in each vertex of a triangle. Then their points of intersection with opposite sides are collinear
if either

1. all bisecting lines are external angle bisectors or
2. one bisecting line is external and the other two are internal angle bisectors.

So altogether we get four lines from four triples of collinear points (Figure3).

4. Cesáro’s theorem

Again with Menelaos’ theorem and Gergonne’s theorem we can show a similiar result for the tetrahedron ( [NAC64], §237,
p.81):

At three edges concurrent in one vertex let be given either

1. three external bisecting planes or
2. one external and two internal bisecting planes.

Then their points of intersection with opposite edges are collinear.

Proof
First we take the case of external bisecting planes at edgesAD,BD,CD and their points of intersectionXa1,Xa2,Xa3 with
opposite edges respectively (Figure4). With Gergonne’s theorem (and same denotations) we have

ABD : BCD= −(AXa2 : Xa2C)

ACD : ABD= −(CXa1 : Xa1B)

BCD : ACD= −(BXa3 : Xa3A)

This implies

(AXa2 : Xa2C)∗ (CXa1 : Xa1B)∗ (BXa3 : Xa3A) = −((ABD : BCD)∗ (ACD : ABD)∗ (BCD : ACD)) = −1

and so pointsXa1,Xa2,Xa3 are collinear by Menelaos’ theorem.
In the second case we have an external bisecting plane at edgeAD and internal bisecting planes at edgesBD andCD. The cor-
responding intersection points with opposite edges areXa,Xi1 andXi2 respectively (Figure5). Again with Gergonne’s theorem
we have

ABD : BCD = AXi1 : Xi1C

BCD : ACD = BXi2 : Xi2A

ACD : ABD = −(CXa : XaB)

and further

(AXi1 : Xi1C)∗ (CXa : XaB)∗ (BXi2 : Xi2A) = −((ABD : BCD)∗ (ACD : ABD)∗ (BCD : ACD)) = −1

which means that pointsXa,Xi1,Xi2 are collinear.

5. Eight special planes of the tetrahedron

Now we are able to formulate the tetrahedron’s analog to the four special lines of a triangle:

The six intersection points of all edges with bisecting planes of their opposite edges are coplanar if either

1. all bisecting planes are external or
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2. bisecting planes at edges concurring in a vertex are external, the others internal or
3. bisecting planes at one opposite pair of edges are external, the othersinternal.

These three cases yieldone, four andthree planes repectively, altogether eight planes.

Proof
Let X1,X2,X3,X4,X5,X6 be the points of intersection of the bisecting planes with edgesCD,BD,BC,AD,AC,AB respectively.

1. By Cesáro’s theoremX1,X2,X3 (vertexA, case 1) andX1,X4,X5 (vertexB, case 1) are collinear. SoX1,X2,X3,X4,X5 are
coplanar. But with CesároX2,X4,X6 (vertexC, case 1) are also collinear and therefore pointX6 lies on the plane of the other
five points.

2. Let the external bisecting planes be given at the edges concurring invertexD, the internal bisecting planes at the remaining
edges. With CesároX3,X5,X6 (vertexD, case 1) andX1,X2,X3 (vertexA, case 2) are collinear. SoX1,X2,X3,X5,X6 are
coplanar. ButX2,X4,X6 (vertexC, case 2) are also collinear and soX4 lies on the plane of the other five points.

3. Let the external bisecting planes be given at edgesAD andBC. With Cesáro (case 2) applied to verticesD,A, andC the
statement follows as in case 2.

6. Four-line-configurations of the triangle

Let be given a triangleABC and some pointsP,Q,R (but no vertex) on sidesAB,BC,CA respectively. LetP′,Q′,R′ be the
harmonic conjugates ofP,Q,Ron the corresponding triangle sides, i.e.

(A,B,P,P′) = (B,C,Q,Q′) = (C,A,R,R′) = −1

Then

P,Q,R collinear⇔ P,Q′,R′ collinear⇔ P′,Q,R′ collinear⇔ P′,Q′,R collinear⇔ lines(A,Q′),(B,R′),(C,P′) concurrent.

Proof
We shortly writeXY instead ofXY for the oriented length of line segmentXY. (A,B,P,P′) = (B,C,Q,Q′) = (C,A,R,R′) = −1
means that
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Now with Menelaos’ theorem we have

P,Q,R collinear⇔
AP
PB

BQ
QC

CR
RA

= −1⇔
AP
PB

BQ′

Q′C
CR′

R′A
= −1⇔ P,Q′,R′ collinear

and with Ceva’s theorem

P,Q,R collinear⇔
AP
PB

BQ
QC

CR
RA

= −1⇔
AP′

P′B
BQ′

Q′C
CR′

R′A
= 1⇔ lines(A,Q′),(B,R′),(C,P′) concurrent

The remaining equivalences follow the same way.

If we intersect the sides of a triangleABCwith a line yielding intersection pointsP,Q,R (unequal to any vertex) on sides
AB,BC,CA respectively and construct the harmonic conjugate pointsP′,Q′,R′ of P,Q,R, then the assumptions of the last
theorem are met and we have afour-line-configuration from four collinear point triples (P,Q,R),(P,Q′,R′),(P′,Q,R′),(P′,Q′,R).

If P,Q,R are intersection points of external andP′,Q′,R′ of internal angle bisectors in verticesC,A,B with corresponding
opposite sides, then we know that(A,B,P,P′) = (B,C,Q,Q′) = (C,A,R,R′) = −1 (section1) andP,Q,Rare collinear (section
3). So this constitutes a special example of a four-line-configuration.
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7. Eight-plane-configurations of the tetrahedron

Let be given a tetrahedronABCDand some pointsP,Q,R,S,T,U (but no vertex) on edgesAB,BC,CA,AD,BD,CD respectively.
Let P′,Q′,R′,S′,T′,U ′ be the harmonic conjugates ofP,Q,R,S,T,U on the corresponding edges, i.e.

(A,B,P,P′) = (B,C,Q,Q′) = (C,A,R,R′) = (A,D,S,S′) = (B,D,T,T′) = (C,D,U,U ′) = −1

Then

P,Q,R,S,T,U coplanar⇔

P,Q,R,S′,T′,U ′ coplanar⇔ P′,Q,R′,S′,T,U coplanar⇔ P′,Q′,R,S,T′,U coplanar⇔ P,Q′,R′,S,T,U ′ coplanar⇔

P′,Q,R′,S,T′,U ′ coplanar⇔ P′,Q′,R,S′,T,U ′ coplanar⇔ P,Q′,R′,S′,T′,U coplanar⇔

planes(A,D,Q′),(B,D,R′),(C,D,P′),(A,B,U ′),(B,C,S′),(C,A,T′) concurrent.

Proof
Because each triple(P,Q,R),(P,S,T),(Q,T,U),(R,S,U) lies in a plane of the tetrahedron, we have the equivalence

P,Q,R,S,T,U coplanar⇔ P,Q,R ∧ P,S,T ∧ Q,T,U ∧ R,S,U collinear (∗).

Applying our theorem from section6 we get seven more equivalences:

(∗) ⇔ P,Q,R ∧ P,S′,T′
∧ Q,T′,U ′

∧ R,S′,U ′ collinear⇔ P,Q,R,S′,T′,U ′ coplanar,

(∗) ⇔ P′,Q,R′
∧ P′,S′,T ∧ Q,T,U ∧ R′,S′,U collinear⇔ P′,Q,R′,S′,T,U coplanar,

(∗) ⇔ P′,Q′,R ∧ P′,S,T′
∧ Q′,T′,U ∧ R,S,U collinear⇔ P′,Q′,R,S,T′,U coplanar,

(∗) ⇔ P,Q′,R′
∧ P,S,T ∧ Q′,T,U ′

∧ R′,S,U ′ collinear⇔ P,Q′,R′,S,T,U ′ coplanar,

(∗) ⇔ P′,Q,R′
∧ P′,S,T′

∧ Q,T′,U ′
∧ R′,S,U ′ collinear⇔ P′,Q,R′,S,T′,U ′ coplanar,

(∗) ⇔ P′,Q′,R ∧ P′,S′,T ∧ Q′,T,U ′
∧ R,S′,U ′ collinear⇔ P′,Q′,R,S′,T,U ′ coplanar,

(∗) ⇔ P,Q′,R′
∧ P,S′,T′

∧ Q′,T′,U ∧ R′,S′,U collinear⇔ P,Q′,R′,S′,T′,U coplanar.

To show the equivalence

P,Q,R,S,T,U coplanar⇔ planes(A,D,Q′),(B,D,R′),(C,D,P′),(A,B,U ′),(B,C,S′),(C,A,T′) concurrent

let’s first assume thatP,Q,R,S,T,U are coplanar. ThenP,Q,R are collinear which implies (theorem section6) that planes
(A,D,Q′),(B,D,R′),(C,D,P′) have a common pointD0 in plane(A,B,C), i.e. they are intersecting in line(D,D0). In the same
way planes(A,B,U ′),(A,C,T′),(A,D,Q′) have a common pointA0 in plane(B,C,D) and therefore intersect in line(A,A0).
This implies that pointZ := (D,D0)∩(A,A0) belongs to five of the six planes in question. Finally planes(A,B,U ′),(B,C,S′),(B,D,R′)
have a common pointB0 in plane(A,C,D) and are thus intersecting in line(B,B0). BecauseZ is element of planes(A,B,U ′)
and(B,D,R′) it must belong to line(B,B0) and consequently to plane(B,C,S′) thus being a common point of all six planes.

To show the inverse implication let the six planes be concurrent in a pointZ. This implies that line(D,Z) is common to planes
(A,D,Q′),(B,D,R′),(C,D,P′). Its point of intersection with plane(A,B,C) is a common point of lines(A,Q′),(B,R′),(C,P′).
Similarly the line triples((A,T′),(B,S′),(D,P′)), ((B,U ′),(C,T′),(D,Q′)) and((A,U ′),(C,S′),(D,R′)) are concurrent. Ap-
plying theorem (section6) we then have the collinearity of triples(P,Q,R),(P,S,T),(Q,T,U),(R,S,U) which implies the
coplanarity of pointsP,Q,R,S,T,U .

If we intersect a tetrahedron ABCD with a plane yielding intersection pointsP,Q,R,S,T,U (unequal to any vertex) on
edgesAB,BC,CA,AD,BD,CD respectively and construct the harmonic conjugate pointsP′,Q′,R′,S′,T′,U ′ of P,Q,R,S,T,U ,
then the assumptions of the last theorem are met and we have aneight-plane-configurationfrom eight coplanar six-tuples
(P,Q,R,S,T,U),(P,Q,R,S′,T′,U ′),(P′,Q,R′,S′,T,U),(P′,Q′,R,S,T′,U),(P,Q′,R′,S,T,U ′),(P′,Q,R′,S,T′,U ′),
(P′,Q′,R,S′,T,U ′),(P,Q′,R′,S′,T′,U).
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If P,Q,R,S,T,U are intersection points of external andP′,Q′,R′,S′,T′,U ′ of internal angle bisectors in edgesCD,AD,BD,BC,AC,AB
with corresponding opposite edges, then from Gergonne’s theorem (section 1) we know that(A,B,P,P′) = (B,C,Q,Q′) =
(C,A,R,R′) = (A,D,S,S′) = (B,D,T,T′) = (C,D,U,U ′) = −1 and from section5 that P,Q,R,S,T,U are coplanar. So this
constitutes a special example of an eight-plane-configuration.

References

[RH95] HONSBERGERR.: Episodes in Nineteenth and Twentieth Century Euclidean Geometry, The Mathematical Associa-
tion of America, 1995.

[NAC64] ALTSHILLER-COURT N.: Modern Pure Solid Geometry, New York: Chelsea, 1964.



6 T. Backmeister / Plane-Configurations of the Tetrahedron

Figure 1: Gergonne - internal angle bisector
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Figure 2: Gergonne - external angle bisector
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Figure 3: Four special lines
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Figure 4: Cesáro - three external angle bisectors
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Figure 5: Cesáro - one external, two internal angle bisectors


