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1. Gergonne’s theorem
For a triangle we have the following factRH95, pp.149,150):

The point of intersection of the internal or external bisector of a veriéxitg opposite side divides this side in the ratio of the
lengths of the sides concurring in that vertex.

The analog is also true for a tetrahedrolNAC64], §235, p.80) (Figures, 2):

The point of intersection of the internal or external bisecting plane oflgelewith its opposite edge divides this edge in the
ratio of the areas of the triangles sharing eklge

Proof
For tetrahedroMBCDwe introduce some abbreviations:
AB := oriented length of segmeAB,
ABC := area of trianglABC,
ABCD:= volume of the tetrahedron,
hag := height of triangleABC on sideAB,
Hagc := height of the terahedron on plaA8C.
Now letX; be the point of intersection of the internal bisecting plane of €igavith its opposite edge ardithe distance 0X;
to planesACD andBCD. Then we have

ACDX = 1/3xHapc*ACX = 1/3xd«ACD

BCDX = 1/3*Hapc*BCX = 1/3%d+BCD
from which follows

ACD:BCD=ACX :BCX = (1/2xAX xhap) : (1/2* XiBxhag) = AX : X;B
The same is true for intersection pok of the external bisecting plane of ed@® with its opposite edge:
ACD:BCD=ACXa:BCXa = —(1/2% AXaxhap) : (1/2% XaBxhpg) = —AXa : XaB

O

2. Menelaos’ and Ceva’s theorem

Again we denote b¥XY the oriented distance of poinksandy, i.e. XY = —Y X. Menelaos’ theorem is basic for the following
considerations and must be mentioned therefore - however withooft (see RH95, p.147):

For a triangleABC and pointsP on sideAB, Q on sideBC, R on sideCA the following is valid:

P,Q,R are collinears (AP: PB) x (BQ: QC) * (CR: RA) = —1

Later we also need the dual statement which is Ceva'’s theorBH Y, p.137):
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For a triangleABC and points, Q,R on its sides as before the following holds:

LinegA,Q), (B,R), (C,P) are concurrent= (AP: PB) x (BQ: QC) * (CR:RA =1

3. Four special lines of the triangle
From Menelaos’ theorem a remarkable fact for triangles can beeateiiRH95, p.149):

Let be given an angle bisecting line in each vertex of a triangle. Then thieitsof intersection with opposite sides are collinear
if either

1. all bisecting lines are external angle bisectors or
2. one hisecting line is external and the other two are internal angle bisector

So altogether we get four lines from four triples of collinear points (Fig)re

4. Cesaro’s theorem

Again with Menelaos’ theorem and Gergonne’s theorem we can showiliasirasult for the tetrahedron NAC64], §237,
p.81):

At three edges concurrent in one vertex let be given either

1. three external bisecting planes or
2. one external and two internal bisecting planes.

Then their points of intersection with opposite edges are collinear.

Proof
First we take the case of external bisecting planes at eA§eBD,CD and their points of intersectioKa;, Xa2, Xa3 With
opposite edges respectively (Figdile With Gergonne’s theorem (and same denotations) we have
ABD: BCD= —(AXg : Xa2C)
ACD: ABD = —(CXa1 : Xa1B)
BCD: ACD = —(BXa3 : Xa3A)
This implies

(AXa2 1 Xa2C) * (CXa1 : Xa1B) * (BXa3 : Xa3A) = —((ABD: BCD) « (ACD: ABD) x (BCD: ACD)) = —1

and so pointXa1, Xa2, Xa3 are collinear by Menelaos’ theorem.

In the second case we have an external bisecting plane aiigad internal bisecting planes at ed@3 andCD. The cor-
responding intersection points with opposite edges<arij; andX;, respectively (Figur®). Again with Gergonne’s theorem
we have
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and further
(AXi1: Xi1C) % (CXa : XaB) * (BX2 : Xi2A) = —((ABD: BCD) = (ACD: ABD) * (BCD: ACD)) = —1

which means that pointéa, X1, Xj» are collinear. [J

5. Eight special planes of the tetrahedron
Now we are able to formulate the tetrahedron’s analog to the four spe@aldira triangle:
The six intersection points of all edges with bisecting planes of their oppalitsere coplanar if either

1. all bisecting planes are external or
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2. bisecting planes at edges concurring in a vertex are external, thre otteznal or
3. bisecting planes at one opposite pair of edges are external, the iotkensl.

These three cases yiaetaie, four andthree planes repectively, altogether eight planes.

Proof
Let X1, X2, X3, X4, X5, Xg be the points of intersection of the bisecting planes with e@d28D, BC, AD, AC, AB respectively.

1. By Cesaro’s theoreriy, Xp, X3 (vertexA, case 1) ancKy, X4, Xs (vertexB, case 1) are collinear. S¢, Xy, X3, X4, X5 are
coplanar. But with Cesar,, X4, Xg (vertexC, case 1) are also collinear and therefore p#lies on the plane of the other
five points.

2. Let the external bisecting planes be given at the edges concurniegt@xD, the internal bisecting planes at the remaining
edges. With Cesariz, X5, Xg (vertexD, case 1) ancKy, Xp, X3 (vertex A, case 2) are collinear. S, Xy, X3, X5, Xg are
coplanar. BuiXy, X4, Xg (vertexC, case 2) are also collinear andplies on the plane of the other five points.

3. Let the external bisecting planes be given at edgesand BC. With Cesaro (case 2) applied to vertid@sA, andC the
statement follows as in case 2.

O

6. Four-line-configurations of the triangle

Let be given a trianglé\BC and some point® Q,R (but no vertex) on sideAB, BC,CA respectively. Le’,Q',R be the
harmonic conjugates ¢ Q, R on the corresponding triangle sides, i.e.

(A> B7PPI) = (B7C7Q>Ql) - (C7A7 R~R/) =-1
Then

P,Q,R collinear< P,Q',R collinear< P',Q,R collinear < P',Q’,R collinear< lines(A,Q'), (B,R), (C,P") concurrent

Proof
We shortly writeXY instead ofXY for the oriented length of line segmexy. (A,B,P,P") = (B,C,Q,Q') = (C,ARR)=-1
means that

% . % = —lor A_P e _E
PB ' PB PB  PB
Q_B . % = —Jor B_Q — _g
QC ' QC QC QcC
R_C . E = —lor C_R— _g
RA"RA RA~ RA
Now with Menelaos’ theorem we have
. APBQCR APBQ CR , .
P,Q,R coll S e <2 — _1sPQ,R coll
) Q,R collinear< PBQC RA & PEO/C RA < P,Q,R collinear
and with Ceva’s theorem
. APBQCR AP BQ CR . ) /
P,Q.R collinear< PEQCRA -l PBQCRA 14 lines(A,Q'), (B,R),(C,P") concurrent

The remaining equivalences follow the same waj/.]

If we intersect the sides of a triangleABC with a line yielding intersection points P, Q, R (unequal to any vertex) on sides
AB, BC,CArespectively and construct the harmonic conjugate point$’,Q’,R of P,Q, R, then the assumptions of the last
theorem are met and we have #ur-line-configuration from four collinear pointtriples (P,Q,R),(P.Q',R),(P’,Q,R),(P',Q’,R).

If P,Q,R are intersection points of external aRd Q',R’ of internal angle bisectors in vertic€ A, B with corresponding
opposite sides, then we know th#, B,P,P’) = (B,C,Q,Q’) = (C,A,R R') = —1 (sectionl) andP,Q,R are collinear (section
3). So this constitutes a special example of a four-line-configuration.
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7. Eight-plane-configurations of the tetrahedron

Let be given a tetrahedroBCDand some pointB, Q,R, S T,U (but no vertex) on edgesB, BC,CA AD,BD,CD respectively.
LetP’,Q,R,S,T’,U’ be the harmonic conjugates BQ,R, S, T,U on the corresponding edges, i.e.

(ABPP)=(BCQQ)=(CARR)=(AD,SS)=(BD,TT)=(CDUU")=-1
Then
P,Q,R,ST,U coplanars

P,Q,R S,T’,U’ coplanar= P',Q,R,S,T,U coplanar= P/,Q,R S T',U coplanar< P,Q',R,S T,U’ coplanar<
P .Q,R,ST' U coplanare P',Q',R S, T,U’ coplanar< P,Q',R,S,T’,U coplanar<

planes(A,D,Q’),(B,D,R),(C,D,P),(A,B,U"),(B,C,S),(C,A T') concurrent

Proof
Because each tripl>, Q,R), (PR,S T),(Q,T,U), (R SU) lies in a plane of the tetrahedron, we have the equivalence

PQ,R ST,U coplanar< PQRA PRST A Q,T,U A R SU collinear (x).
Applying our theorem from sectioBiwe get seven more equivalences:

(x) ©PQRAPS,T" A QT U ARS,U collinear< P.Q,R,S, T’ U’ coplanar

(x) =P QR AP.S,TAQT,U AR,S,Ucollinear< P,Q,R,S,T,U coplanar

)P Q. RAP ST A Q. T .U ARSU collinear< P',Q,R ST',U coplanar
() PQ,R APST A Q ,T,U A R,SU’collinear= P,Q',R,ST,U’ coplanar
(x) =P QR AP.ST A QT U AR,SU collinear= P,Q,R,ST' U’ coplanar
x) =P Q. RAP.S,TAQ,TU ARS,U collinear= P',Q',R S, T,U’ coplanar

() =PQ,R APS, T AQ,T U A R,S,U collinear= P,Q',R,S, T’,U coplanar
To show the equivalence
P,Q,R,ST,U coplanars planes(A,D,Q’), (B,D,R),(C,D,P’),(A,B,U"),(B,C,S),(C,A T') concurrent

let’s first assume tha®, Q,R,S T,U are coplanar. The®, Q,R are collinear which implies (theorem sectiépthat planes
(A,D,Q"),(B,D,R),(C,D,P’) have a common poirdg in plane(A, B,C), i.e. they are intersecting in lif®, Do). In the same
way planegA,B,U’),(A,C,T'),(A,D,Q’) have a common poimy in plane(B,C,D) and therefore intersect in ling, Ag).

This implies that poinZ := (D, Dg) N (A, Ag) belongs to five of the six planes in question. Finally plaifes,U’), (B,C,S), (B,D,R))
have a common poirBg in plane(A,C,D) and are thus intersecting in li{@, By). Becaus¢ is element of planegA, B,U”)
and(B,D,R) it must belong to linéB, Bg) and consequently to plariB,C, S) thus being a common point of all six planes.

To show the inverse implication let the six planes be concurrent in a BoiFttis implies that lingD, Z) is common to planes
(A,D,Q"),(B,D,R),(C,D,P). Its point of intersection with plan@, B,C) is a common point of lineéA Q'), (B,R), (C,P’).
Similarly the line triples((A, T"), (B, S),(D,P")), ((B,U"),(C,T"),(D,Q’)) and((A,U’),(C,S),(D,R)) are concurrent. Ap-
plying theorem (sectio®) we then have the collinearity of triple® Q,R), (RS T),(Q,T,U), (R SU) which implies the
coplanarity of point®,Q,R,ST,U. [

If we intersect a tetrahedron ABCD with a plane yielding intersection pointsP,Q,R, S, T,U (unequal to any vertex) on
edgesAB, BC,CA AD, BD,CD respectively and construct the harmonic conjugate point®’,Q’,R’,S,T’,U’ of LQ,R,S, T, U,
then the assumptions of the last theorem are met and we have anght-plane-configurationfrom eight coplanar six-tuples
(PQRSTU),(PQRS,TU).(F.QR.S.TU),(P.Q.RST U),(RQ,R.STU"),(F.QR.ST" U,
(P,Q,RS,T,U",(PQ,R,S, T U).
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If P,Q,R,S T,U are intersection points of external aRdQ’,R’,S, T’,U’ of internal angle bisectors in edgé®, AD, BD, BC,AC,AB
with corresponding opposite edges, then from Gergonne’s theomextiois1) we know that(A B,P,P") = (B,C,Q,Q') =
(C,ARR)=(AD,SS)=(B,D,T,T') = (C,D,U,U’) = —1 and from sectiors thatP,Q,R S, T,U are coplanar. So this
constitutes a special example of an eight-plane-configuration.
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Figure 1: Gergonne - internal angle bisector
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Figure 2: Gergonne - external angle bisector
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Figure 3: Four special lines
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Figure 4: Ceséro - three external angle bisectors
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Figure 5: Cesaro - one external, two internal angle bisectors



